MZT(株)ゼブラフィッシュ創薬研究所

  • HOME
  • 研究開発
  • メンバー
  • アルバム
  • リンク
  • 研究員募集
  • アクセス
  • HOME
  • >
  • Publication List English
  • >
  • 詳細

最近の記事

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline.
2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741
2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis
2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine
2021/07/09
Establishment of a Quality Control Protocol for Zebrafish Developmental Toxicity Studies
2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish
2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis
2019/10/15
C3orf70 Is Involved in Neural and Neurobehavioral Development
2019/09/22
Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation
2019/07/17
Aging-associated microstructural deterioration of vertebra in zebrafish

一覧に戻る

2001/01/01
  • CiteULike
  • reddit
  • StumbleUpon
  • linkedin
  • Delicious
  • Mendeley
  • はてなブックマーク
  • Youtube
  • Google+
  • Twitter
  • Facebook

Loss of nuclear localization of the S100C protein in immortalized human fibroblasts.

M Sakaguchi,H Yamada,T Tsuji,Y Inoue, M Miyazaki,T Tanaka,M Namba
RADIATION RESEARCH 155,208 -214 2001

Abstract

It is well known that cancer develops through a multistep process. In vitro transformation studies of normal human cells have shown that the immortalization step is critical for neoplastic transformation of cells. Furthermore, studies of cell fusion between normal and immortalized cells have indicated that the normal phenotype is dominant and the immortal phenotype is recessive. Thus we looked for cellular proteins that were down-regulated in immortalized human cells by two-dimensional gel electrophoresis to elucidate the mechanisms of immortalization of human cells. We found that the S100C protein was down-regulated in immortalized cells. This protein was localized in the cytoplasm of cells at the semiconfluent stage, while at the confluent stage it moved into the nuclei of normal cells but not into those of immortalized cells. Microinjection of an S100C antibody into normal confluent cells diminished the level of nuclear S100C protein, resulting in DNA synthesis. Taken together, loss of nuclear localization of the S100C protein, which may be related to DNA synthesis, is thought to be one of the mechanisms of immortalization.

関連リンク

  • Pubmed