MZT(株)ゼブラフィッシュ創薬研究所

  • HOME
  • 研究開発
  • メンバー
  • アルバム
  • リンク
  • 研究員募集
  • アクセス
  • HOME
  • >
  • Publication List English
  • >
  • 詳細

最近の記事

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline.
2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741
2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis
2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine
2021/07/09
Establishment of a Quality Control Protocol for Zebrafish Developmental Toxicity Studies
2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish
2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis
2019/10/15
C3orf70 Is Involved in Neural and Neurobehavioral Development
2019/09/22
Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation
2019/07/17
Aging-associated microstructural deterioration of vertebra in zebrafish

一覧に戻る

1994/09/01
  • CiteULike
  • reddit
  • StumbleUpon
  • linkedin
  • Delicious
  • Mendeley
  • はてなブックマーク
  • Youtube
  • Google+
  • Twitter
  • Facebook

Identification and characterization of isoenzymes of cyclic nucleotide phosphodiesterase in human kidney and heart, and the effects of new cardiotonic agents on these isoenzymes.

Sugioka M, Ito M, Masuoka H, Ichikawa K, Konishi T, Tanaka T, Nakano T.
Naunyn Schmiedebergs Arch Pharmacol. 1994 Sep;350(3):284-93.

Abstract

The present study was done to identify and characterize the isoenzymes of cyclic nucleotide phosphodiesterase (PDE) and to determine their intracellular distribution in human kidney and heart. The in vitro effects of new cardiotonic agents, namely, NSP-805 (4,5-dihydro-5-methyl-6-[4-[(2-methyl-3-oxo-1-cyclopentenyl)amino] phenyl]-3(2H)-pyridazinone), TZC-5665 (6-[4-[2-[3-(5-chloro-2-cyanophenoxy)-2-hydroxypropylamino]- 2 -methylpropylamino]phenyl]-5-methyl-4,5-dihydro-3(2H)-pyridazinone ) and its metabolites, OPC-18790 ((+/-)-6-[3-(3,4-dimethoxybenzylamino)-2 -hydroxypropoxy]-2-(1H)-quinolinone), MS-857 (4-acetyl-1-methyl-7-(4-pyridyl)-5,6,7,8-tetrahydro-3(2H)-isoquinolinone ) and E-1020 (1,2-dihydro-6-methyl-2-oxo-5-(imidazo[1,2-a]pyridin-6-yl)-3-pyridine carbonitrile hydrochloride monohydrate), on these human PDE isoenzymes were also investigated. PDE isoenzymes were separated from cytosolic and particulate fractions of homogenates of human kidney and heart by DEAE-Sepharose chromatography. PDE isoenzymes were identified by their elution characteristics, substrate specificities, sensitivities to regulation by effectors and by the use of isoenzyme-specific inhibitors. In a cytosolic fraction from kidney, Ca2+/calmodulin-dependent PDE (CaM-PDE), cyclic GMP-stimulated PDE (cGS-PDE), cyclic GMP-inhibited PDE (cGI-PDE) and two forms of cyclic AMP-specific PDE (cAMP-PDE) were resolved. One form of cAMP-PDE (cAMP-PDE alpha), which was eluted at a lower ionic strength than cGI-PDE during DEAE-Sepharose chromatography, was newly recognized in human tissues, though the other form (cAMP-PDE beta), which eluted later than cGI-PDE, had been previously isolated.(ABSTRACT TRUNCATED AT 250 WORDS)

関連リンク

  • Pubmed