MZT(株)ゼブラフィッシュ創薬研究所

  • HOME
  • 研究開発
  • メンバー
  • アルバム
  • リンク
  • 研究員募集
  • アクセス
  • HOME
  • >
  • Publication List English
  • >
  • 詳細

最近の記事

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline.
2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741
2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis
2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine
2021/07/09
Establishment of a Quality Control Protocol for Zebrafish Developmental Toxicity Studies
2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish
2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis
2019/10/15
C3orf70 Is Involved in Neural and Neurobehavioral Development
2019/09/22
Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation
2019/07/17
Aging-associated microstructural deterioration of vertebra in zebrafish

一覧に戻る

1993/12/11
  • CiteULike
  • reddit
  • StumbleUpon
  • linkedin
  • Delicious
  • Mendeley
  • はてなブックマーク
  • Youtube
  • Google+
  • Twitter
  • Facebook

Myosin Light Chain Kinase Occurs in Bullfrog Sympathetic Neurons and May Modulate Voltage-Dependent Potassium Currents.

Akasu T, Ito M, Nakano T, Schneider CR, Simmons MA, Tanaka T, Tokimasa T, Yoshida M.
Neuron. 1993 Dec;11(6):1133-45.

Abstract

A polyclonal antibody against myosin light chain kinase (MLCK) of chicken gizzard recognized a 130 kd peptide of bullfrog sympathetic ganglia as MLCK. MLCK immunoreactivity was confined to the neuronal cell body. A synthetic peptide corresponding to an inhibitory domain of MLCK (Ala783-Gly804) was applied intracellularly to isolated sympathetic neurons during whole-cell recordings of ionic currents. The peptide inhibitor reversibly decreased M-type potassium current (IM) while not affecting A-type of delayed rectifier-type potassium currents. Intracellular application of an active fragment of MLCK enhanced IM, whereas application of an inactive MLCK fragment did not. The results suggest that IM can be modulated by MLCK-catalyzed phosphorylation.

関連リンク

  • Pubmed