MZT(株)ゼブラフィッシュ創薬研究所

  • HOME
  • 研究開発
  • メンバー
  • アルバム
  • リンク
  • 研究員募集
  • アクセス
  • HOME
  • >
  • Publication List English
  • >
  • 詳細

最近の記事

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline.
2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741
2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis
2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine
2021/07/09
Establishment of a Quality Control Protocol for Zebrafish Developmental Toxicity Studies
2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish
2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis
2019/10/15
C3orf70 Is Involved in Neural and Neurobehavioral Development
2019/09/22
Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation
2019/07/17
Aging-associated microstructural deterioration of vertebra in zebrafish

一覧に戻る

1983/03/01
  • CiteULike
  • reddit
  • StumbleUpon
  • linkedin
  • Delicious
  • Mendeley
  • はてなブックマーク
  • Youtube
  • Google+
  • Twitter
  • Facebook

Calcium-independent activation of calcium ion dependent cyclic nucleotide phosphodiesterase by synthetic compounds: quinazolinesulfonamide derivatives.

Biochemistry. 1983 Mar 1;22(5):1030-4.

Calcium-independent activation of calcium ion dependent cyclic nucleotide phosphodiesterase by synthetic compounds: quinazolinesulfonamide derivatives.

Tanaka T, Yamada E, Sone T, Hidaka H.


Abstract

Quinazolinesulfonamides are synthetic compounds which calcium-independently stimulate Ca2+-dependent cyclic nucleotide phosphodiesterase. As this activation was observed with 2,4-dipiperidino-6-quinazolinesulfonamides but not with 4-piperidino-6-quinazolinesulfonamides, the activation seems to be dependent on the piperidine residue at the 2 and 4 position of the quinazoline ring, and the extent of hydrophobicity of each compound was thus enhanced. 2,4-Dipiperidino-6-quinazolinesulfonamide activates Ca2+-dependent phosphodiesterase in the absence of Ca2+-calmodulin (CaM). These quinazolinesulfonamides did not further enhance the activity of Ca2+-dependent phosphodiesterase activated by the Ca2+-CaM complex. These compounds are also potent inhibitors of cyclic AMP and GMP phosphodiesterases. CaM antagonists such as N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), its derivatives, and chlorpromazine and prenylamine inhibited selectively the quinazolinesulfonamide-induced activations of the phosphodiesterase. These quinazolinesulfonamides, in a high concentration, had only a slight stimulatory effect on myosin light chain kinase activity. All these findings suggest that the quinazolinesulfonamides are calcium-independent activators of Ca2+-dependent phosphodiesterase and they are proving to be useful tools for the study of CaM and phosphodiesterase, in vitro.


PMID: 6301535 [PubMed - indexed for MEDLINE]

関連リンク

  • Pubmed