MZT(株)ゼブラフィッシュ創薬研究所

  • HOME
  • 研究開発
  • メンバー
  • アルバム
  • リンク
  • 研究員募集
  • アクセス
  • HOME
  • >
  • Publication List English
  • >
  • 詳細

最近の記事

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline.
2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741
2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis
2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine
2021/07/09
Establishment of a Quality Control Protocol for Zebrafish Developmental Toxicity Studies
2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish
2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis
2019/10/15
C3orf70 Is Involved in Neural and Neurobehavioral Development
2019/09/22
Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation
2019/07/17
Aging-associated microstructural deterioration of vertebra in zebrafish

一覧に戻る

2015/03/01
  • CiteULike
  • reddit
  • StumbleUpon
  • linkedin
  • Delicious
  • Mendeley
  • はてなブックマーク
  • Youtube
  • Google+
  • Twitter
  • Facebook

Copper Oxide Nanoparticles Reduce Vasculogenesis in Transgenic Zebrafish Through Down-Regulation of Vascular Endothelial Growth Factor Expression and Induction of Apoptosis

Journal of Nanoscience and Nanotechnology, Volume 15, Number 3, March 2015, pp. 2140-2147(8)

Copper Oxide Nanoparticles Reduce Vasculogenesis in Transgenic Zebrafish Through Down-Regulation of Vascular Endothelial Growth Factor Expression and Induction of Apoptosis

Chang, Jie; Ichihara, Gaku; Shimada, Yasuhito; Tada-Oikawa, Saeko; Kuroyanagi, Junya; Zhang, Beibei; Suzuki, Yuka; Sehsah, Radwa; Kato, Masashi; Tanaka, Toshio; Ichihara, Sahoko

Abstract:
The present study investigated the effects of exposure to metal oxide nanoparticles on vasculogenesis/angiogenesis using transgenic zebrafish. The study also examined the potential mechanisms involved in those effects using human umbilical vein endothelial cells (HUVEC). TG (nacre/fli1:EGFP) zebrafish were exposed to nano-sized titanium dioxide (TiO2), silica dioxide (SiO2), and copper oxide (CuO) particles at 0.01, 1 and 100 μg/ml concentrations from 1 to 5 dpf (day-post-fertilization). Angiogenesis was evaluated morphologically at the end of exposure. Exposure to CuO nanoparticles reduced the number of transversely-running subintestinal vessels in TG zebrafish. Exposure to CuO nanoparticles down-regulated the expression of vascular endothelial growth factor (VEGF) and VEGF receptor in endothelial cells sorted by Fluorescence Activated Cell Sorter (FACS). Exposure of HUVEC to CuO nanoparticles reduced cell viability and increased apoptotic index in a dose-dependent manner. The results suggested that CuO nanoparticles inhibit vasculogenesis through reduction of VEGF expression and induction of apoptosis.

関連リンク

  • Journal of Nanoscience and Nanotechnology