MZT(株)ゼブラフィッシュ創薬研究所

  • HOME
  • 研究開発
  • メンバー
  • アルバム
  • リンク
  • 研究員募集
  • アクセス
  • HOME
  • >
  • Publication List English
  • >
  • 詳細

最近の記事

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline.
2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741
2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis
2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine
2021/07/09
Establishment of a Quality Control Protocol for Zebrafish Developmental Toxicity Studies
2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish
2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis
2019/10/15
C3orf70 Is Involved in Neural and Neurobehavioral Development
2019/09/22
Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation
2019/07/17
Aging-associated microstructural deterioration of vertebra in zebrafish

一覧に戻る

2018/12/27
  • CiteULike
  • reddit
  • StumbleUpon
  • linkedin
  • Delicious
  • Mendeley
  • はてなブックマーク
  • Youtube
  • Google+
  • Twitter
  • Facebook

Increased susceptibility to oxidative stress-induced toxicological evaluation by genetically modified nrf2a-deficient zebrafish.

J Pharmacol Toxicol Methods. 2018 Dec 27;96:34-45. doi: 10.1016/j.vascn.2018.12.006. [Epub ahead of print]
Increased susceptibility to oxidative stress-induced toxicological evaluation by genetically modified nrf2a-deficient zebrafish.
Yamashita A1, Deguchi J2, Honda Y2, Yamada T2, Miyawaki I2, Nishimura Y3, Tanaka T4.
Author information
Abstract
INTRODUCTION:
Oxidative stress plays an important role in drug-induced toxicity. Oxidative stress-mediated toxicities can be detected using conventional animal models but their sensitivity is insufficient, and novel models to improve susceptibility to oxidative stress have been researched. In recent years, gene targeting methods in zebrafish have been developed, making it possible to generate homozygous null mutants. In this study, we established zebrafish deficient in the nuclear factor erythroid 2-related factor 2a (nrf2a), a key antioxidant-responsive gene, and its potential to detect oxidative stress-mediated toxicity was examined.

METHODS:
Nrf2a-deficient zebrafish were generated using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 technique. The loss of nrf2a function was confirmed by the tolerability to hydrogen peroxide and hydrogen peroxide-induced gene expression profiles being related to antioxidant response element (ARE)-dependent signaling. Subsequently, vulnerability of nrf2a-deficient zebrafish to acetaminophen (APAP)- or doxorubicin (DOX)-induced toxicity was investigated.

RESULTS:
Nrf2a-deficient zebrafish showed higher mortality than wild type accompanied by less induction of ARE-dependent genes with hydrogen peroxide treatment. Subsequently, this model showed increased severity and incidence of APAP-induced hepatotoxicity or DOX-induced cardiotoxicity than wild type.

DISCUSSION:
Our results demonstrated that anti-oxidative response might not fully function in this model, and resulted in higher sensitivity to drug-induced oxidative stress. Our data support the usefulness of nrf2a-deficient model as a tool for evaluation of oxidative stress-related toxicity in drug discovery research.

Copyright © 2019 Elsevier Inc. All rights reserved.

KEYWORDS:
Acetaminophen; Doxorubicin; Nrf2a-deficiency; Oxidative stress; Toxicity evaluation; Zebrafish

PMID: 30594530 DOI: 10.1016/j.vascn.2018.12.006

関連リンク

  • 三重大学大学院医学系研究科システムズ薬理学
  • Mie University Medical Zebrafish Research Center

関連ファイル

  • J Pharmacol Toxicol Methods. 2018 Dec 27;96:34-45. doi: 10.1016/j.vascn.2018.12.006. [Epub ahead of print]